
Implementation of Parallel to Serial Interfacing
using Synchronous First-In First-Out Buffer

Puya Fard Venkateshwar Reddy Enukonda Joseph Salas
Computer Engineering Computer Engineering Computer Engineering

California State University, Fresno California State University, Fresno California State University, Fresno
Fresno,CA Fresno,CA Fresno,CA

Abstract—Data transmission is the main purpose of
communication networks. Systems transferring huge data require
high speed data transmission. Parallel to Serial Interface is a
subsystem involved in such high speed operating systems. Open
Systems Interconnection (OSI) model is a standard that describes
communication function of a communication networking system.
There are 7 layers in the model, and each layer has to perform a
unique functionality. OSI model published by International
Organization of Standardization (ISO) in 1984 to bring a common
standard in the field of computing and communication systems. The
hardware layers are responsible for data transmission and reception
at transmitter and receiver respectively. Using a serial connection, we
can minimize the number of connection wires, minimizing also the
skew problem on the connection itself. So, Parallel to Serial Interface
and Serial to Parallel Interface are used in tandem to achieve this in
communication networks. For this reason, the transmitter is expected
to transmit the data serially independent of the internal data modes.
So, the parallel to serial interfacing is important at the transmitter
end, so is the serial to parallel interfacing at receiver end. The three
layers in the hardware layers are collectively doing this operation.
The parallel port to serial port with Synchronous First-In First-Out
(FIFO) buffer can do the tasks of Network, Data-Link and Physical
layer in the hardware part of the communication network. The
Asynchronous transmission is difficult to achieve and requires two
different clock frequencies to read and write data. Hence, the current
discussion is limited to using Synchronous FIFO buffer for
transmitting data.

Keywords— Asynchronous, Buffer, Data, FIFO, Synchronous,
Transmission.

I. INTRODUCTION
Data has become an important part of the current century. Be it
biomedical applications, social media networking, BigData
utilized in forecasting or suggestions in the field of business
development, large training data for Artificial Intelligence and
Machine Learning techniques, etc. It is obvious that handling
that big of a data is very important for data engineers and data
scientists. Equally, hardware engineers also need to realize the
models for transmitting high speed networking systems for
transmission of such huge data. Parallel to Serial Interface is a
subsystem involved in such high speed operating systems. The

PSI is realized by using three sub modules, namely, parallel port,
serial port, and FIFO buffer operated in synchronization with
common clock. The communication protocol is directed by the
OSI model. Hence, our discussion is divided as follows. The
current one, Section-I is about the introduction and need for
high speed networking systems. Section-II deals with the Open
Systems Interconnection model. In Section-III, we have a brief
discussion on the implementation of PSI with synchronous
FIFO. Section-IV is about the synthesis portion. We conclude
our discussion with conclusion in Section-V. Different ideas was
presented during the researching phase among our group, our
team leader, Venkateshwar came up with this idea to transmit
data using Parallel to Serial Interfacing with Synchronous FIFO
Buffer.

II. OPEN SYSTEMS INTERCONNECTION MODEL
Before we came up with this Design idea, we met up as a group
and discussed what we want to implement and work as a
semester project. All of us came up with different ideas,
however, Venkateshwar introduced Parallel to Series
implementation with synchronous FIFO buffer idea and we all
agreed on it. All of us individually started researching about
how it works, and what it does so we can understand how it
works so we can implement it in verilog. After a week of
research, we had a solid understanding of what needs to be done
and we did it. Data transmission is vital for communication
networks. The parallel to serial interface is a subsystem of
network devices that are involved in high speed data transfer. In
the Open Systems Interconnection (OSI) model,this device is in
the fragmentation layer, in which networak packets which have
headers, data, and trailers all of various amounts of bits, have to
be transferred to other devices over a network connection.
Multiple bits of information can be sent across a single data
stream through a parallel to serial interface.



Fig. 1. Seven Layers of OSI Model

We are interested in only the three hardware layers of the OSI
model, namely, Network Layer, Datalink Layer, and Physical
Layer. The data transmission along with the attached header and
trailer parts is shown in Fig. 2 [1]. The header is supposed to
contain the addresses of sender and receiver. The trailer part
indicates the end of the frame/packet.

Fig. 2. Hardware Layers of OSI Model

The physical layer is the bottom most layer in the OSI model
and it is responsible for the transmission and reception of data
between the networking devices and the transmission medium.
The transmission rate is controlled by the physical layer. The
data transmission between two directly connected points is done
by the data link layer. The physical layer converts the received
data into bits and sends it to the data link layer. The logical
communication between different network devices is provided
by the network layer Addressing, an important part of the
process is also performed by this layer. It adds the destination
and source address with the header to the data arrived at this
layer

III. PSI WITH FIFO BUFFER

The design of any modern digital system involves a
step-by-step procedure called Full ASIC flow shown in Fig. 3
[2]. Initially, with the requirements of the project, the design
specifications are determined. The design is formulated using
state diagrams shown in Fig. 4 (a) and Fig. 4 (b) and block
diagram shown in Fig. 5.

Fig. 3. Full ASIC Flow

Fig. 4 (a). FSM for Parallel Control Logic

Fig. 4 (b). FSM for Serial Control Logic



Fig. 5. Schematic of PSI using Synchronous FIFO Buffer

Hardware Description Language (HDL) coding such as
VHDL, Verilog etc. is used in Top-Down approach of digital
design. This coding is commonly known as Register Transfer
Level (RTL) coding in digital design and involves two parts as
shown in Fig. 6 [2]. We used Verilog as HDL and simulated in
ModelSim of Intel FPGA starter edition provided by the Fresno
State Virtual Labs.

Fig. 6. Parts involved in RTL Design

The three modules are coded separately and combined by the
top module. The parallel block takes a parallel input and outputs
the parallel output and the write enable to enable the FIFO write
port if not full. Clock, reset and request are common to both
parallel and serial blocks. Empty and Serial input are inputs to
serial block. The serial output and the read enable to enable the
FIFO read port if not empty. The FIFO block contains FIFO
input which is output of parallel port. Clock and reset are
common that of parallel and serial blocks. Read and Write ports
are enabled by read enable and write enable signals of serial and
parallel ports respectively. The outputs of the FIFO are FIFO
output, counter, empty and full flags. The FIFO block [3]
contains pointer block, read block, write block, counter block,
full, empty registers and a FIFO RAM.

A First-In First-Out (FIFO) is a queue that will output the
oldest data in the structure first. As opposed to a stack, which is
a Last-In First-Out (LIFO), and outputs the last data in first.
This is a very common memory structure in digital systems,
often used to buffer values between two different modules. The
pointer block provides read and write pointers according to read
and write operations into queue. The read block uses

the read pointer to read from the queue memory. The write block
uses the write pointer to write

Fig. 7 (a). Waveform of Parallel port module

Fig. 7 (b). Waveform of FIFO block module

Fig. 7 (c). Waveform of Serial port module

into the queue memory. The counter block keeps track of the
number of data in the queue and issues empty and full flags.
FIFO RAM is a queue of 16-bit with depth of 8 in our case. The
simulation result of the modules is shown in Fig. 7 (a), (b), (c).
and the monitored pointers of FIFO block and serial output of
serial port module is shown in Fig. 8 (a), (b) respectively.



Fig. 8 (a). Monitored pointers of FIFO block

Fig. 8 (b). Monitored serial output of Serial Port module

The pointers and serial output are updated as expected and is
therefore working as designed. Hence, we can move onto next
stage of ASIC flow, Synthesis.

IV. SYNTHESIS

Synthesis is the extraction of gate-level netlist and other
reports related to area, power, timing etc. from the
VHDL/Verilog code. Design Compiler (DC) by Synopsys is one
of the popular synthesis tools in the industry. We used the same
tool provided by Fresno State Virtual Labs. It has a standard cell
library, NangateOpenCellLibrary in our case. It has a compiler
in addition to standard cell which is linked through
.synopsys_dc.setup file. We get output gate netlist and a few
reports to analyze. The schematic in Fig. 9. [4] shows the
procedure of synthesis process.

Fig. 9. Synthesis by Synopsys DC

One of the reports and gate netlist synthesized by DC
compiler is shown in Fig. 10 (a), (b).

Fig. 10 (a). Power synthesis report

Fig. 10 (b). Initial part of synthesized gate netlist

V. CONCLUSION
The Parallel to Serial Interfacing using a synchronous FIFO

buffer was designed, simulated and synthesized using ModelSim
and Synopsys DC Compiler. Initially, all the three modules
were designed and simulated. They were tested with individual
testbenches to verify their functionality. Later, a top module
involving all three layers was simulated and tested with a unique
testbench. The outputs were as per the functionalities expected.
When the functionality of the designed circuit was achieved, it
was then synthesized in DC Compiler. The involvement of
complex memories and



controls made the synthesis a bit ambiguous and thus there is a
need to understand the synthesis cell libraries and this is yet to
be done. This constitutes the future scope of this project and also
the full ASIC flow post-synthesis is topic to be explored which
is to be done as a continuation to this project in any of the
Physical Design courses. Thus, any aspiring hardware engineer
has to involve with all the stages of ASIC design flow as there
are job and research opportunities at every stage.

VI. REFERENCES

[1] Open Systems Interconnection (OSI) model:
https://www.baeldung.com/cs/osi-model.
[2] Notes of ECE-176 by Dr. A. Stillmaker at Fresno State.
[3] Navabi Z., Verilog Digital System Design (2nd edition),

(2006), McGraw-Hill, pp.no. 167-171.
[4] Handout-Synthesis of EEC-281 by Prof. Dr. B. Baas, UC

Davis.
[5] ModelSim® Command Reference Manual, Mentor

Graphics®.
[6] Design Compiler® User Guide, Synopsys®.

https://www.baeldung.com/cs/osi-model

